Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Angew Chem Int Ed Engl ; 63(19): e202319765, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38502093

RESUMO

The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.


Assuntos
Antibacterianos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Animais , Enterococcus/efeitos dos fármacos , Estrutura Molecular , Humanos , Camundongos
2.
Nanoscale ; 16(14): 7145-7153, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502112

RESUMO

The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 µm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 µm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.


Assuntos
Giardia lamblia , Giardíase , Animais , Humanos , Giardia lamblia/metabolismo , Trofozoítos/metabolismo , Giardíase/metabolismo , Organelas , Análise Espectral
3.
Soft Matter ; 20(3): 484-494, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37842771

RESUMO

Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent 'patchy colloid' model has shed light on adhesion in Gram-negative Escherichia coli cells, a corresponding model for Gram-positive cells has been elusive. In this study, we employ single cell force spectroscopy to investigate the adhesion force of Staphylococcus aureus. Normally, only one contact point of the entire bacterial surface is measured. However, by using a sine-shaped surface and recording force-distance curves along a path perpendicular to the rippled structures, we can characterize almost a hemisphere of one and the same bacterium. This unique approach allows us to study a greater number of contact points between the bacterium and the surface compared to conventional flat substrata. Distributed over the bacterial surface, we identify sites of higher and lower adhesion, which we call 'patchy adhesion', reminiscent of the patchy colloid model. The experimental results show that only some cells exhibit particularly strong adhesion at certain locations. To gain a better understanding of these locations, a geometric model of the bacterial cell surface was created. The experimental results were best reproduced by a model that features a few (5-6) particularly strong adhesion sites (diameter about 250 nm) that are widely distributed over the cell surface. Within the simulated patches, the number of molecules or their individual adhesive strength is increased. A more detailed comparison shows that simple geometric considerations for interacting molecules are not sufficient, but rather strong angle-dependent molecule-substratum interactions are required. We discuss the implications of our results for the development of new materials and the design and analysis of future studies.


Assuntos
Aderência Bacteriana , Staphylococcus aureus , Propriedades de Superfície , Microscopia de Força Atômica/métodos , Parede Celular , Bactérias , Coloides
4.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998820

RESUMO

In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of ß-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.

5.
Microbiol Spectr ; 11(6): e0281323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819153

RESUMO

IMPORTANCE: Staphylococcus aureus uses numerous strategies to survive and persist in the intracellular environment of professional phagocytes, including modulation of the SUMOylation process. This study aims to understand how S. aureus alters host SUMOylation to enhance its intracellular survival in professional phagocytes. Our results indicate that S. aureus strain Newman utilizes PtpA-driven phosphorylation to decrease the amount of SUMOylated proteins in murine macrophages to facilitate its survival in this immune cell type.


Assuntos
Staphylococcus aureus , Sumoilação , Animais , Camundongos , Staphylococcus aureus/metabolismo , Macrófagos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Tirosina/metabolismo
6.
Eur J Clin Microbiol Infect Dis ; 42(11): 1373-1381, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37721704

RESUMO

Hypervirulent ribotypes (HVRTs) of Clostridioides difficile such as ribotype (RT) 027 are epidemiologically important. This study evaluated whether MALDI-TOF can distinguish between strains of HVRTs and non-HVRTs commonly found in Europe. Obtained spectra of clinical C. difficile isolates (training set, 157 isolates) covering epidemiologically relevant HVRTs and non-HVRTs found in Europe were used as an input for different machine learning (ML) models. Another 83 isolates were used as a validation set. Direct comparison of MALDI-TOF spectra obtained from HVRTs and non-HVRTs did not allow to discriminate between these two groups, while using these spectra with certain ML models could differentiate HVRTs from non-HVRTs with an accuracy >95% and allowed for a sub-clustering of three HVRT subgroups (RT027/RT176, RT023, RT045/078/126/127). MALDI-TOF combined with ML represents a reliable tool for rapid identification of major European HVRTs.

7.
Ann Anat ; 249: 152099, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37105406

RESUMO

BACKGROUND: With the ongoing increase in antimicrobial resistances seen in bacterial isolates causing a keratitis in humans, animal models have become an important tool to study new antimicrobial therapies. Nevertheless, the establishment of experimental keratitis is difficult. Here, we discuss the impact of different arrangements, including animal age, bacterial strain and dose as well as epithelium removal on the outcome of experimental keratitis. We therefore present the methods and results of our establishing experiments. METHODS: Bacterial load determination and flow cytometry were performed using eye homogenate gained from a 72 h lasting murine Pseudomonas aeruginosa keratitis model. Additionally, the intensity of the infection was scored from 0 to 5, the mice weighed, and blood immune cells counted. RESULTS: We found that older C57BL/6 N mice (8-11 months) are more susceptible to develop a keratitis than younger mice (5-6 weeks). Epithelium removal has no major impact on infectivity and disease progression in aged mice. P. aeruginosa exoU+ strains, such as PA54, should preferentially be used and highly concentrated (∼ 5 ×107 colony forming units CFU). Establishing an infection with the exoU- PAO1 derivative DSM 19880 was not possible. CONCLUSIONS: We present a replicable method to achieve a successful experimental P. aeruginosa keratitis in C57BL/6 N mice that is sustained or aggravated over the observation period of 3 days in 80 % of all animals tested. Our work is of particular interest to all researchers planning the establishment of such experimental models. We show some key aspects that can simplify and quicken the procedure, ultimately saving costs and animal life.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Pseudomonas aeruginosa , Infecções Oculares Bacterianas/microbiologia , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/microbiologia , Ceratite/microbiologia , Modelos Animais de Doenças
8.
Microbiol Spectr ; 11(3): e0388622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995240

RESUMO

Invasion of host cells is an important feature of Staphylococcus aureus. The main internalization pathway involves binding of the bacteria to host cells, e.g., endothelial cells, via a fibronectin (Fn) bridge between S. aureus Fn binding proteins and α5ß1-integrin, followed by phagocytosis. The secreted extracellular adherence protein (Eap) has been shown to promote this cellular uptake pathway of not only S. aureus, but also of bacteria otherwise poorly taken up by host cells, such as Staphylococcus carnosus. The exact mechanisms are still unknown. Previously, we demonstrated that Eap induces platelet activation by stimulation of the protein disulfide isomerase (PDI), a catalyst of thiol-disulfide exchange reactions. Here, we show that Eap promotes PDI activity on the surface of endothelial cells, and that this contributes critically to Eap-driven staphylococcal invasion. PDI-stimulated ß1-integrin activation followed by increased Fn binding to host cells likely accounts for the Eap-enhanced uptake of S. aureus into non-professional phagocytes. Additionally, Eap supports the binding of S. carnosus to Fn-α5ß1 integrin, thereby allowing its uptake into endothelial cells. To our knowledge, this is the first demonstration that PDI is crucial for the uptake of bacteria into host cells. We describe a hitherto unknown function of Eap-the promotion of an enzymatic activity with subsequent enhancement of bacterial uptake-and thus broaden mechanistic insights into its importance as a driver of bacterial pathogenicity. IMPORTANCE Staphylococcus aureus can invade and persist in non-professional phagocytes, thereby escaping host defense mechanisms and antibiotic treatment. The intracellular lifestyle of S. aureus contributes to the development of infection, e.g., in infective endocarditis or chronic osteomyelitis. The extracellular adherence protein secreted by S. aureus promotes its own internalization as well as that of bacteria that are otherwise poorly taken up by host cells, such as Staphylococcus carnosus. In our study, we demonstrate that staphylococcal uptake by endothelial cells requires catalytic disulfide exchange activity by the cell-surface protein disulfide isomerase, and that this critical enzymatic function is enhanced by Eap. The therapeutic application of PDI inhibitors has previously been investigated in the context of thrombosis and hypercoagulability. Our results add another intriguing possibility: therapeutically targeting PDI, i.e., as a candidate approach to modulate the initiation and/or course of S. aureus infectious diseases.


Assuntos
Adesinas Bacterianas , Infecções Estafilocócicas , Humanos , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Células Endoteliais/metabolismo , Staphylococcus aureus/metabolismo , Integrinas/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513287

RESUMO

Atherosclerosis is a chronic, inflammatory disease of the vessel wall where triggered immune cells bind to inflamed endothelium, extravasate and sustain local inflammation. Leukocyte adhesion and extravasation are mediated by adhesion molecules expressed by activated endothelial cells, like intercellular adhesion molecule 1 (ICAM-1). Extracellular adherence protein (Eap) from Staphylococcus aureus binds to a plethora of extracellular matrix proteins, including ICAM-1 and its ligands macrophage-1 antigen (Mac-1, αMß2) and lymphocyte function-associated antigen 1 (LFA-1, αLß2), thereby disrupting the interaction between leukocytes and endothelial cells. We aimed to use Eap to inhibit the interaction of leukocytes with activated endothelial cells in settings of developing and established atherosclerosis in apolipoprotein E (ApoE) deficient mice on high-fat diet. In developing atherosclerosis, Eap treatment reduced circulating platelet-neutrophil aggregates as well as infiltration of T cells and neutrophils into the growing plaque, accompanied by reduced formation of neutrophil extracellular traps (NETs). However, plaque size did not change. Intervention treatment with Eap of already established plaques did not result in cellular or morphological plaque changes, whereas T cell infiltration was increased and thereby again modulated by Eap. We conclude that although Eap leads to cellular changes in developing plaques, clinical implications might be limited as patients are usually treated at a more advanced stage of disease progression. Hence, usage of Eap might be an interesting mechanistic tool for cellular infiltration during plaque development in basic research but not a clinical target.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Molécula 1 de Adesão Intercelular/genética , Staphylococcus aureus/metabolismo , Células Endoteliais/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Fenótipo
10.
Front Microbiol ; 13: 969961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504815

RESUMO

Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication.

11.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430506

RESUMO

Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host's defence mechanisms.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Animais , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fosfatase Ácida , Peixe-Zebra/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia
12.
Life (Basel) ; 12(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143456

RESUMO

The skin is the largest and outermost organ of the human body. The microbial diversity of the skin can be influenced by several variable factors such as physiological state, lifestyle, and geographical locations. Recent years have seen increased interest in research aiming at an improved understanding of the relationship between the human microbiota and several diseases. Albeit understudied, interesting correlations between the skin microbiota and several dermatological conditions have been observed. Studies have shown that a decrease or increase in the abundance of certain microbial communities can be implicated in several dermatological pathologies. This narrative review (i) examines the role of the skin microbiota in the maintenance of skin homeostasis and health, (ii) provides examples on how some common skin diseases (acne inversa, candidiasis, psoriasis) are associated with the dysbiosis of microbial communities, and (iii) describes how recent research approaches used in skin microbiome studies may lead to improved, more sensitive diagnostics and individual therapeutics in the foreseeable future.

13.
Microorganisms ; 10(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014060

RESUMO

Acanthamoeba keratitis (AK) is a dangerous infectious disease, which is associated with a high risk of blindness for the infected patient, and for which no standard therapy exists thus far. Patients suffering from AK are thus treated, out of necessity, with an off-label therapy, using drugs designed and indicated for other diseases/purposes. Here, we tested the capability of the off-label anti-amoebic drugs chlorhexidine (CH; 0.1%), dibromopropamidine diisethionate (DD; 0.1%), hexamidine diisethionate (HD; 0.1%), miltefosine (MF; 0.0065%), natamycin (NM; 5%), polyhexamethylene biguanide (PHMB; 0.02%), povidone iodine (PVPI; 1%), and propamidine isethionate (PD; 0.1%) to suppress trophozoite formation of Acantamoeba castellanii and Acanthamoeba hatchetti cysts on non-nutrient agar Escherichia coli plates. Of the eight off-label anti-amoebic drugs tested, only PVPI allowed for a complete suppression of trophozoite formation by drug-challenged cysts for all four Acanthamoeba isolates in all five biological replicates. Drugs such as NM, PD, and PHMB repeatedly suppressed trophozoite formation with some, but not all, tested Acanthamoeba isolates, while other drugs such as CH, DD, and MF failed to exert a relevant effect on the excystation capacities of the tested Acanthamoeba isolates in most, if not all, of our repetitions. Our findings suggest that pre-testing of the AK isolate with the non-nutrient agar E. coli plate assay against the anti-amoebic drug intended for treatment should be performed to confirm that the selected drug is cysticidal for the Acanthamoeba isolate.

14.
Bio Protoc ; 12(8): e4383, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35800101

RESUMO

CD4+ T cells are essential players in orchestrating the specific immune response against intracellular pathogens, and in inhibiting tumor development in an early stage. The activation of T cells is triggered by engagement of T cell receptors (TCRs). Here, CD3 and CD28 molecules are key factors, (co)stimulating signaling pathways essential for activation and proliferation of CD4+ T cells. T cell activation induces the formation of a tight mechanical bond between T cell and target cell, the so-called immunological synapse (IS). Due to this, mechanical cell properties, including stiffness, play a significant role in modulating cell functions. In the past, many approaches were made to investigate mechanical properties of immune cells, including micropipette aspiration, microplate-based rheometry, techniques based on deformation during cytometry, or the use of optical tweezers. However, the stiffness of T lymphocytes at a subcellular level at the IS still remains largely elusive. With this protocol, we introduce a method based on atomic force microscopy (AFM), to investigate the local cellular stiffness of T cells on functionalized glass/Polydimethylsiloxan (PDMS) surfaces, which mimicks focal stimulation of target cells inducing IS formation by T cells. By applying the peak force nanomechanical mapping (QNM) technique, cellular surface structures and the local stiffness are determined simultaneously, with a resolution of approximately 60 nm. This protocol can be easily adapted to investigate the mechanical impact of numerous factors influencing IS formation and T cell activation. Graphical abstract: Overview of the experimental workflow. Individual experimental steps are shown on the left, hands on and incubation times for each step are shown right.

15.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503420

RESUMO

Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.


Assuntos
Infecções Bacterianas , Paladar , Animais , Células Epiteliais , Imunidade Inata , Camundongos , Pseudomonas aeruginosa , Transdução de Sinais , Paladar/fisiologia , Traqueia
16.
Angew Chem Int Ed Engl ; 61(30): e202202816, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485800

RESUMO

The rise of antimicrobial resistance poses a severe threat to public health. The natural product chlorotonil was identified as a new antibiotic targeting multidrug resistant Gram-positive pathogens and Plasmodium falciparum. Although chlorotonil shows promising activities, the scaffold is highly lipophilic and displays potential biological instabilities. Therefore, we strived towards improving its pharmaceutical properties by semisynthesis. We demonstrated stereoselective epoxidation of chlorotonils and epoxide ring opening in moderate to good yields providing derivatives with significantly enhanced solubility. Furthermore, in vivo stability of the derivatives was improved while retaining their nanomolar activity against critical human pathogens (e.g. methicillin-resistant Staphylococcus aureus and P. falciparum). Intriguingly, we showed further superb activity for the frontrunner molecule in a mouse model of S. aureus infection.


Assuntos
Antimaláricos , Malária Falciparum , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Compostos de Epóxi/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
17.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328675

RESUMO

Staphylococcus epidermidis is a common cause of device related infections on which pathogens form biofilms (i.e., multilayered cell populations embedded in an extracellular matrix). Here, we report that the transcription factor SpoVG is essential for the capacity of S. epidermidis to form such biofilms on artificial surfaces under in vitro conditions. Inactivation of spoVG in the polysaccharide intercellular adhesin (PIA) producing S. epidermidis strain 1457 yielded a mutant that, unlike its parental strain, failed to produce a clear biofilm in a microtiter plate-based static biofilm assay. A decreased biofilm formation capacity was also observed when 1457 ΔspoVG cells were co-cultured with polyurethane-based peripheral venous catheter fragments under dynamic conditions, while the cis-complemented 1457 ΔspoVG::spoVG derivative formed biofilms comparable to the levels seen with the wild-type. Transcriptional studies demonstrated that the deletion of spoVG significantly altered the expression of the intercellular adhesion (ica) locus by upregulating the transcription of the ica operon repressor icaR and down-regulating the transcription of icaADBC. Electrophoretic mobility shift assays (EMSA) revealed an interaction between SpoVG and the icaA-icaR intergenic region, suggesting SpoVG to promote biofilm formation of S. epidermidis by modulating ica expression. However, when mice were challenged with the 1457 ΔspoVG mutant in a foreign body infection model, only marginal differences in biomasses produced on the infected catheter fragments between the mutant and the parental strain were observed. These findings suggest that SpoVG is critical for the PIA-dependent biofilm formation of S. epidermis under in vitro conditions, but is largely dispensable for biofilm formation of this skin commensal under in vivo conditions.


Assuntos
Staphylococcus epidermidis , Fatores de Transcrição , Animais , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Complexo Ferro-Dextran , Camundongos , Polissacarídeos Bacterianos/metabolismo , Staphylococcus epidermidis/metabolismo , Fatores de Transcrição/metabolismo
18.
ACS Biomater Sci Eng ; 8(4): 1476-1485, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263544

RESUMO

Research into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required. The results, however, may be highly case-dependent because natural surfaces have the disadvantage of being subject to wide variations, for instance in their chemical composition, structure, morphology, roughness, and porosity. A synthetic surface which mimics enamel in its performance with respect to bacterial adhesion and biocompatibility would, therefore, facilitate systematic studies much better. In this study, we discuss the possibility of using hydroxyapatite (HAp) pellets to simulate the surfaces of teeth and show the possibility and limitations of using a model surface. We performed single-cell force spectroscopy with single Staphylococcus aureus cells to measure adhesion-related parameters such as adhesion force and rupture length of cell wall proteins binding to HAp and enamel. We also examine the influence of blood plasma and saliva on the adhesion properties of S. aureus. The results of these measurements are matched to water wettability, elemental composition of the samples, and the change in the macromolecules adsorbed over time on the surface. We found that the adhesion properties of S. aureus were similar on HAp and enamel samples under all conditions: Significant decreases in adhesion strength were found equally in the presence of saliva or blood plasma on both surfaces. We therefore conclude that HAp pellets are a good alternative for natural dental material. This is especially true when slight variations in the physicochemical properties of the natural materials may affect the experimental series.


Assuntos
Durapatita , Staphylococcus aureus , Esmalte Dentário , Durapatita/química , Durapatita/metabolismo , Durapatita/farmacologia , Análise Espectral , Staphylococcus aureus/metabolismo , Propriedades de Superfície
19.
Anaerobe ; 77: 102548, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35307546

RESUMO

OBJECTIVES: Clostridioides difficile is a major cause of nosocomial diarrhea. Several "hypervirulent" lineages such as ribotype 027 (RT027) and RT078 are of high epidemiological importance, leading to outbreaks and more severe courses of disease. An active surveillance system targeting molecular epidemiology and corresponding antimicrobial resistance has not been established in Germany. METHODS: Since October 2019, University Hospitals throughout Germany collected by two dates every year (1st April and October, respectively) their first ten unselected samples being tested positive for C. difficile. RESULTS: Out of 1026 samples received from 29 sites, 876 toxigenic C. difficile strains could be cultivated. PCR ribotyping of these strains revealed a large strain diversity with RT014 (17.5%) dominating, followed by isolates of the major nosocomial lineage RT001 (7.1%) and the "hypervirulent" lineage RT078 (5.9%). Notably, prevalence of RT027 was low with ∼3.5% at all time points analyzed, while the abundance of RT001 isolates significantly declined from 12.3% to 3.7% during the sampling period (P < 0.001). Antimicrobial resistance against clarithromycin, moxifloxacin, and rifampicin was detected in 18%, 15%, and 4% of the tested isolates, respectively. Highest resistance rates were found among RT027 isolates (83%, 87% and 63% for clarithromycin, moxifloxacin, and rifampicin, respectively). Vancomycin resistance was not detected, and metronidazole resistance was observed only for a single RT027 isolate. CONCLUSIONS: This Germany-wide continuing surveillance effort with a standardized mode of isolate acquisition indicates that isolates of RT027 were only sporadically detected under these strain acquisition conditions, and RT001 seems to become less important in the hospital setting, being replaced by other RTs.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Infecção Hospitalar , Humanos , Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/tratamento farmacológico , Moxifloxacina , Clostridioides , Vigilância de Evento Sentinela , Testes de Sensibilidade Microbiana , Claritromicina , Rifampina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus , Ribotipagem , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana
20.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163191

RESUMO

Pneumonia is a life-threatening disease often caused by infection with Streptococcus pneumoniae and Pseudomonas aeruginosa. Many of the mediators (e.g., TNF, IL-6R) and junction molecules (e.g., E-cadherin) orchestrating inflammatory cell recruitment and loss of barrier integrity are proteolytically cleaved through a disintegrin and metalloproteinases (ADAMs). We could show by Western blot, surface expression analysis and measurement of proteolytic activity in cell-based assays, that ADAM10 in epithelial cells is upregulated and activated upon infection with Pseudomonas aeruginosa and Exotoxin A (ExoA), but not upon infection with Streptococcus pneumoniae. Targeting ADAM10 by pharmacological inhibition or gene silencing, we demonstrated that this activation was critical for cleavage of E-cadherin and modulated permeability and epithelial integrity. Stimulation with heat-inactivated bacteria revealed that the activation was based on the toxin repertoire rather than the interaction with the bacterial particle itself. Furthermore, calcium imaging experiments showed that the ExoA action was based on the induction of calcium influx. Investigating the extracellular vesicles and their proteolytic activity, we could show that Pseudomonas aeruginosa triggered exosomal release of ADAM10 and proteolytic cleavage in trans. This newly described mechanism could constitute an essential mechanism causing systemic inflammation in patients suffering from Pseudomonas aeruginosa-induced pneumonia stimulating future translational studies.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Células A549 , Epitélio/metabolismo , Exossomos/metabolismo , Exossomos/fisiologia , Humanos , Inflamação/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...